Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Metab ; 4(2): 239-253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145325

RESUMO

Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors. Mechanistically, GS directly interacts with the nuclear pore protein NUP88 to prevent its binding to CDC20. Such interaction licenses activation of the CDC20-mediated anaphase-promoting complex or cyclosome to ensure proper metaphase-to-anaphase transition. In addition, GS is overexpressed in human non-small cell lung cancer and its depletion reduces tumor growth in mice and increases the efficacy of microtubule-targeted chemotherapy. Our findings highlight a moonlighting function of GS in governing mitosis and illustrate how an essential metabolic enzyme promotes cell proliferation and tumor development, beyond its main metabolic function.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Glutamato-Amônia Ligase , Humanos , Camundongos , Mitose
3.
Front Oncol ; 11: 770843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746012

RESUMO

As a central cellular program to sense and transduce stress signals, the integrated stress response (ISR) pathway has been implicated in cancer initiation and progression. Depending on the genetic mutation landscape, cellular context, and differentiation states, there are emerging pieces of evidence showing that blockage of the ISR can selectively and effectively shift the balance of cancer cells toward apoptosis, rendering the ISR a promising target in cancer therapy. Going beyond its pro-survival functions, the ISR can also influence metastasis, especially via proteostasis-independent mechanisms. In particular, ISR can modulate metastasis via transcriptional reprogramming, in the help of essential transcription factors. In this review, we summarized the current understandings of ISR in cancer metastasis from the perspective of transcriptional regulation.

4.
Br J Cancer ; 118(10): 1337-1348, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29717200

RESUMO

BACKGROUND: Chemerin, a known chemoattractant, participates in multiple biological events. However, its role in cancer remains largely unknown. METHODS: Chemerin expression was evaluated by real-time PCR, western blot and immunohistochemistry. Forced expression, RNAi, immunoprecipitation, etc. were used in function and mechanism study. Mouse models of extrahepatic and intrahepatic metastasis were employed to evaluate the therapeutic potential of chemerin. RESULTS: Chemerin expression was significantly downregulated in hepatocellular carcinoma, and associated with poor prognosis of HCC patients. Forced expression of chemerin inhibited in vitro migration, invasion and in vivo metastasis of HCC cells. Administration of chemerin effectively suppressed extrahepatic and intrahepatic metastases of HCC cells, resulting in prolonged survival of tumour-bearing nude mice. Chemerin upregulated expression and phosphatase activity of PTEN by interfering with PTEN-CMKLR1 interaction, leading to weakened ubiquitination of PTEN and decreased p-Akt (Ser473) level, which was responsible for suppressed migration, invasion and metastasis of HCC cells. Positive correlation between chemerin and PTEN, and reverse correlation between chemerin and p-Akt (Ser473) were also observed in HCC clinical samples and intrahepatic mouse model in vivo. CONCLUSIONS: Our study has revealed the suppressive role and therapeutic potential of chemerin in HCC metastasis, providing both a prognostic marker and drug candidate for HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Quimiocinas/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Receptores de Quimiocinas/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Quimiocinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Proteína Oncogênica v-akt/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Hepatology ; 62(6): 1791-803, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26257239

RESUMO

UNLABELLED: Sorafenib is a specific adenosine triphosphate-competitive RAF inhibitor used as a first-line treatment of advanced hepatocellular carcinoma (HCC). However, the responses are variable, reflecting heterogeneity of the disease, while the resistance mechanism remains poorly understood. Here, we report that sorafenib treatment can exacerbate disease progression in both patient-derived xenografts and cell line-derived xenografts and that the therapeutic effect of the drug inversely covaries to the ratio of epithelial cell adhesion molecule-positive cells, which may be tumor initiating cells in HCC. The TSC2-AKT cascade mediates this sorafenib resistance. In response to sorafenib treatment, formation of the TSC1/2 complex is enhanced, causing increased phosphorylation of AKT, which contributes to up-regulation of "stemness"-related genes in epithelial cell adhesion molecule-positive cells and enhancement of tumorigenicity. The expression of TSC2 negatively correlated with prognosis in clinical sorafenib therapy. Furthermore, all-trans retinoic acid decreased AKT activity, reduced the epithelial cell adhesion molecule-positive cell population enriched by sorafenib, and potentiated the therapeutic effect of sorafenib in the patient-derived xenograft model. CONCLUSION: Our findings suggest that a subtype of HCC is not suitable for sorafenib therapy; this resistance to sorafenib can be predicted by the status of TSC2, and agents inducing differentiation of tumor initiating cells (e.g., all-trans retinoic acid) should improve the prognosis of this subtype of HCC.


Assuntos
Antígenos de Neoplasias/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Carcinoma Hepatocelular/induzido quimicamente , Moléculas de Adesão Celular/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Células-Tronco Neoplásicas/efeitos dos fármacos , Niacinamida/análogos & derivados , Proteína Oncogênica v-akt/fisiologia , Compostos de Fenilureia/efeitos adversos , Proteínas Supressoras de Tumor/fisiologia , Animais , Carcinoma Hepatocelular/classificação , Progressão da Doença , Molécula de Adesão da Célula Epitelial , Humanos , Neoplasias Hepáticas/classificação , Camundongos , Niacinamida/efeitos adversos , Sorafenibe , Proteína 2 do Complexo Esclerose Tuberosa
6.
J Hepatol ; 59(6): 1255-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23867314

RESUMO

BACKGROUND & AIMS: Systemic chemotherapy serves as an adjuvant treatment for post-operation patients with hepatocellular carcinoma (HCC), and provides curative option for the patients with unresectable HCC. However, its efficiency is largely limited because of the high incidence of chemo-resistance. Increasing evidence has shown that tumor initiating cells (TICs) not only have the ability to self-renew and drive the initiation and progression of cancer, but also exhibit greater resistance to conventional chemo- and radio-therapies than non-TICs. It was the aim of this study to investigate the effects of ATRA with and without cisplatin on TIC differentiation and apoptosis in human HCC. METHODS: In the present study, we evaluated the TICs of HCC cell differentiation induced by all-trans retinoic acid (ATRA), and developed a novel chemotherapeutic approach to HCC, by characterizing the function of combinatorial treatment with cis-diammineplatinum(II) (cisplatin) and ATRA in vitro and in vivo. RESULTS: ATRA effectively induced differentiation of TICs, which potentiated the cytotoxic effects of cisplatin. The combinatorial treatment of ATRA acid and cisplatin reduced protein kinase B (AKT) (Thr308) phosphorylation, and promoted apoptosis of HCC cells more significantly than treatment with cisplatin alone. In addition, the combined treatment with the two drugs exerted stronger inhibition on either HCC cell migration in vitro or metastasis in vivo, when compared to the treatment with either drug alone. CONCLUSIONS: These results indicated that ATRA could significantly improve the effect of cisplatin, which is at least partially attributed to ATRA-induced differentiation of HCC TICs, and the subsequent decrease in this chemo-resistant subpopulation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Antígenos de Neoplasias/fisiologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Moléculas de Adesão Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Sinergismo Farmacológico , Molécula de Adesão da Célula Epitelial , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Células-Tronco Neoplásicas/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Nat Commun ; 3: 667, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22314363

RESUMO

Eph receptors are implicated in regulating the malignant progression of cancer. Here we find that despite overexpression of EphB3 in human non-small-cell lung cancer, as reported previously, the expression of its cognate ligands, either ephrin-B1 or ephrin-B2, is significantly downregulated, leading to reduced tyrosine phosphorylation of EphB3. Forced activation of EphB3 kinase in EphB3-overexpressing non-small-cell lung cancer cells inhibits cell migratory capability in vitro as well as metastatic seeding in vivo. Furthermore, we identify a novel EphB3-binding protein, the receptor for activated C-kinase 1, which mediates the assembly of a ternary signal complex comprising protein phosphatase 2A, Akt and itself in response to EphB3 activation, leading to reduced Akt phosphorylation and subsequent inhibition of cell migration. Our study reveals a novel tumour-suppressive signalling pathway associated with kinase-activated EphB3 in non-small-cell lung cancer, and provides a potential therapeutic strategy by activating EphB3 signalling, thus inhibiting tumour metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphB3/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Células HEK293 , Humanos , Ligantes , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Modelos Biológicos , Mutação , Metástase Neoplásica , Transplante de Neoplasias , Fosforilação , Fótons , Receptores de Quinase C Ativada , Transdução de Sinais , Tirosina/química
8.
J Biol Chem ; 287(11): 7845-58, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22262830

RESUMO

Non-small-cell lung cancer (NSCLC) is a deadly disease due to lack of effective diagnosis biomarker and therapeutic target. Much effort has been made in defining gene defects in NSCLC, but its full molecular pathogenesis remains unexplored. Here, we found RACK1 (receptor of activated kinase 1) was elevated in most NSCLC, and its expression level correlated with key pathological characteristics including tumor differentiation, stage, and metastasis. In addition, RACK1 activated sonic hedgehog signaling pathway by interacting with and activating Smoothened to mediate Gli1-dependent transcription in NSCLC cells. And silencing RACK1 dramatically inhibited in vivo tumor growth and metastasis by blocking the sonic hedgehog signaling pathway. These results suggest that RACK1 represents a new promising diagnosis biomarker and therapeutic target for NSCLC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Receptores de Quinase C Ativada , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transplante Heterólogo , Proteína GLI1 em Dedos de Zinco
9.
PLoS One ; 6(6): e21419, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731740

RESUMO

BACKGROUND: Esophageal Squamous Cell Carcinoma (ESCC) is a major subtype of esophageal cancer causing significant morbility and mortality in Asia. Mechanism of initiation and progression of this disease is unclear. Tumor initiating cells (TICs) are the subpopulation of cells which have the ability to self-renew, as well as, to drive initiation and progression of cancer. Increasing evidence has shown that TICs exist in a variety of tumors. However, the identification and characterization of TICs in esophageal carcinoma has remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: to identify TICs in ESCC, ESCC cell lines including two primary cells were used for screening suitable surface marker. Then colony formation assay, drug resistant assay and tumorigenicity assay in immune deficient mice were used to characterize TICs in ESCC. We found that just the CD44 expression correlated with tumorigenicity in ESCC cell lines. And then induced differentiation of ESCC cells by all-trans retinoic acid treatment led to decreased expression of CD44. The FACS isolated cell subpopulations with high CD44 expression showed increased colony formation and drug resistance in vitro, as well as significantly enhanced tumorigenicity in NOD/SICD mice, as compared to the low expressing CD44 ESCC cells. CONCLUSIONS/SIGNIFICANCE: our study has discovered a novel TIC surface marker, CD44, which can be utilized to enrich efficiently the TICs in ESCC. These findings will be useful for further studies of these cells and exploring therapeutic approaches.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/patologia , Adulto , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos
10.
Cancer Res ; 71(3): 1156-66, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21266352

RESUMO

Eph receptors, the largest subfamily of transmembrane tyrosine kinase receptors, have been increasingly implicated in various physiologic and pathologic processes, and the roles of the Eph family members during tumorigenesis have recently attracted growing attention. Until now, research on EphB3 function in cancer is limited to focusing on tumor suppression by EphB receptors in colorectal cancer. However, its function in other types of cancer remains poorly investigated. In this study, we explored the function of EphB3 in non-small-cell lung cancer (NSCLC). We found that the expression of EphB3 was significantly upregulated in clinical samples and cell lines, and the expression level correlated with the patient pathologic characteristics, including tumor size, differentiation, and metastasis. Overexpression of EphB3 in NSCLC cell lines accelerated cell growth and migration and promoted tumorigenicity in xenografts in a kinase-independent manner. In contrast, downregulation of EphB3 inhibited cell proliferation and migration and suppressed in vivo tumor growth and metastasis. Furthermore, we showed that silencing of EphB3 inhibited cell growth by reducing DNA synthesis and caspase-8-mediated apoptosis and suppressed cell migration by increasing accumulation of focal adhesion formation. Taken together, our findings suggest that EphB3 provides critical support to the development and progression of NSCLC by stimulating cell growth, migration, and survival, thereby implicating EphB3 as a potential therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , Receptor EphB3/biossíntese , Animais , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 8/metabolismo , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor EphB3/genética
11.
Mol Cell Proteomics ; 9(12): 2617-28, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20699381

RESUMO

Gastric cardia cancer (GCC), which occurs at the gastric-esophageal boundary, is one of the most malignant tumors. Despite its high mortality and morbidity, the molecular mechanism of initiation and progression of this disease is largely unknown. In this study, using proteomics and metabolomics approaches, we found that the level of several enzymes and their related metabolic intermediates involved in glucose metabolism were deregulated in GCC. Among these enzymes, two subunits controlling pyruvic acid efflux, lactate dehydrogenase A (LDHA) and pyruvate dehydrogenase B (PDHB), were further analyzed in vitro. Either down-regulation of LDH subunit LDHA or overexpression of PDH subunit PDHB could force pyruvic acid into the Krebs cycle rather than the glycolysis process in AGS gastric cancer cells, which inhibited cell growth and cell migration. Our results reflect an important glucose metabolic signature, especially the dysregulation of pyruvic acid efflux in the development of GCC. Forced transition from glycolysis to the Krebs cycle had an inhibitory effect on GCC progression, providing potential therapeutic targets for this disease.


Assuntos
Glucose/metabolismo , Metabolômica , Proteômica , Neoplasias Gástricas/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ciclo do Ácido Cítrico , Primers do DNA , Eletroforese em Gel Bidimensional , Feminino , Glicólise , Humanos , L-Lactato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Complexo Piruvato Desidrogenase/genética , Interferência de RNA , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia
12.
Hepatology ; 51(2): 535-44, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19918976

RESUMO

UNLABELLED: Eph/Ephrin family, one of the largest receptor tyrosine kinase families, has been extensively studied in morphogenesis and neural development. Recently, growing attention has been paid to its role in the initiation and progression of various cancers. However, the role of Eph/Ephrins in hepatocellular carcinoma (HCC) has been rarely investigated. In this study, we found that the expression of EphrinA2 was significantly up-regulated in both established cell lines and clinical tissue samples of HCC, and the most significant increase was observed in the tumors invading the portal veins. Forced expression of EphrinA2 in HCC cells significantly promoted in vivo tumorigenicity, whereas knockdown of this gene inhibited this oncogenic effect. We further found that suppression of apoptosis, rather than accelerating proliferation, was responsible for EphrinA2-enhanced tumorigenicity. In addition, EphrinA2 endowed cancer cells with resistance to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis, thus facilitating their survival. Furthermore, we disclosed a novel EphrinA2/ras-related c3 botulinum toxin substrate 1 (Rac1)/V-akt murine thymoma viral oncogene homolog (Akt)/nuclear factor-kappa B (NF-kappaB) pathway contributing to the inhibitory effect on apoptosis in HCC cells. CONCLUSION: This study revealed that EphrinA2 played an important role in the development and progression of HCC by promoting the survival of cancer cells, indicating its role as a potential therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Efrina-A2/fisiologia , Neoplasias Hepáticas/etiologia , NF-kappa B/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...